

Tetrahedron Letters 41 (2000) 3453-3457

TETRAHEDRON LETTERS

Total synthesis of calonyctin A2, a macrolidic glycolipid with plant growth-promoting activity

Jun-ichi Furukawa, Shigeru Kobayashi, Motoyoshi Nomizu, Norio Nishi and Nobuo Sakairi*

Division of Bio-Science, Graduate School of Environmental Earth Science, Hokkaido University, Kita-ku, Sapporo 060-0810, Japan

Received 31 January 2000; accepted 10 March 2000

Abstract

Calonyctin A2, a tetrasaccharidic glycolipid having a 22-membered macrolidic structure, has been synthesized by the assembly of three 6-deoxygenated thioglycoside intermediates. The short-step synthesis was achieved by preparation of the most complicated b–c disaccharide unit from phenyl 2,2':4,6:4',6'-tri-O-benzylidene-1-thio- β -D-laminaribioside without any glycosidation reaction and by regioselective macrolactonization. © 2000 Elsevier Science Ltd. All rights reserved.

Keywords: carbohydrates; glycolipids; calonyctin A; glycosides; macrolides; thioglycosides.

Calonyctin extracted from the leaves of Yue-Guang-Hua (Calonyction aculeatum L. House) is a plant growth regulator, which promotes the tuber production of sweet potato and increases the crop yields of beans and wheat.¹ It is a mixture of homologous glycolipids consisting of a common deoxygenated tetrasaccharide residue and 11-hydroxy fatty acids,² which are named calonyctin A1 (1) and A2 (2), respectively (Fig. 1).³ Furthermore, one of the sugar hydroxyl groups is acylated with (2R,3R)-3-hydroxy-2-methylbutyric acid. The most remarkable feature of their structure is that they have a 22-membered macloride ring. The absolute configuration of the aglycon moiety was determined as S by Schmidt's synthesis of **1** from a racemic fatty acid.⁴ In this communication, we describe an expeditious synthesis of calonyctin A2 (2) using laminaribiose as the starting material. On the basis of our studies on the chemical modification of laminaribiose,⁵ we envisioned that the readily accessible tri-O-benzylidene derivative **3** could be used as a synthon for the most complicated disaccharide unit (Qui-b and Qui-c) of 2. Compound **3** was converted into a crucial disaccharide donor, phenyl 3'-O-allyl-2,2'-di-O-benzoyl-4,4'-di-O-benzyl-6,6'-dideoxy-1-thio- β -D-laminaribioside **8**, which had to be coupled with a monosaccharide intermediate 17 and a L-rhamnosyl donor 21. Furthermore, an optically active 11(S)-hydroxymyristic acid derivative 14 could be prepared from the known (S)- χ -tosyloxymethyl- χ -butyrolactone in an enantioselective manner.

^{*} Corresponding author. Tel/fax: +81 11 706 2257; e-mail: nsaka@ees.hokudai.ac.jp (N. Sakairi)

^{0040-4039/00/\$ -} see front matter © 2000 Elsevier Science Ltd. All rights reserved. *PII:* S0040-4039(00)00427-5

The synthetic route of the disaccharide donor **8** is illustrated in Scheme 1. Thus, **3** was allylated at the unprotected hydroxyl group to give the fully protected disaccharide⁶ **4**. Upon treatment of **4** with PPTS in CHCl₃–MeOH at room temperature, the most labile *O*-benzylidene group with an eightmembered ring underwent selective cleavage, to give the 2,2'-diol⁶ **5** in 79% yield based on consumed **4**. The following reductive cleavage of the benzylidene group in **5** was one of the most difficult steps in the present synthesis, and this was overcome by applying Kusumoto's reagent system.⁷ Treatment of **5** with BH₃·Me₂NH–BF₃·OEt₂ in CH₂Cl₂ gave the desired 2,6,2',6'-tetraol **6** in 77% yield without any affection on the other protecting groups.⁸ The conventional reduction of **5**, or its 2,2'-di-*O*-acetyl derivative with BH₃·Me₃N–AlCl₃⁹ or DAIBAL-H,¹⁰ Super-Hydride[®], failed due to poor regioselectivity and undesirable cleavage of the protecting group. Subsequently, **6** underwent selective esterification in a one-pot manner with TsCl and then with excess BzCl, giving the labile 2,2'-di-*O*-benzoyl-6,6'-di-*O*tosyl derivative **7**. Without purification, **7** was reduced with NaBH₄ in DMF at 70°C into the dideoxy derivative⁶ **8** in an overall yield of 47% from **6**.

Scheme 1. Reagents and conditions: (a) AllylBr, NaH, DMF; (b) PPTS, MeOH/CHCl₃; (c) $BF_3 \cdot OEt_2$, $Me_2NH \cdot BH_3$, CH_2Cl_2 , under N_2 ; (d) TsCl, pyridine, then BzCl; (e) NaBH₄, DMF, 70°C

For the synthesis of the aglycon moiety of **2**, the optically active pentanetriol¹¹ **9** derived from Lglutamic acid was subjected to selective silvlation and subsequent basic treatment with *tert*-BuOK in THF to give the epoxide **10** (Scheme 2). Treatment of **10** in THF with 9-(benzyloxy)nonyl magnesium bromide in the presence of CuI and subsequent benzoylation gave **11**⁶ in an overall yield of 72%. A three-step reaction involving de-*O*-silvlation with Bu₄NF, bromination with CBr₄–PPh₃,¹² and reduction with Bu₃SnH–AIBN was carried out to give **12**.⁶ Treatment of **12** with methanolic sodium methoxide followed by Birch reduction gave the tetradecan-1,11-diol⁶ **13**. Finally, a primary hydroxyl group of **13** was subjected to two-step oxidation¹³ with TEMPO and subsequently with sodium chlorite to give 11(S)-hydroxymyristic acid, which was isolated and characterized as the methyl ester **14**.⁶ In order to construct the target compound **2**, two other intermediates, phenyl 2-*O*-acetyl-3,4-di-*O*-benzyl-6-*O*-mesyl-1-thio- β -D-glucopyranoside¹⁴ **15** and phenyl 2,3,4-tri-*O*-benzyl-1-thio- α -L-rhamnopyranoside¹⁵ **21**, were prepared.

Scheme 2. Reagents and conditions: (a) TBDPSCl, pyridine/CH₂Cl₂, then *tert*-BuOK, THF; (b) 9-(benzyloxy)nonyl magnesium bromide, CuI, THF, 0°C: BzCl, pyridine; (c) *n*-Bu₄NF, THF: CBr₄, Ph₃P, DMF, then Bu₃SnH, AIBN, toluene, 80°C; (d) NaOMe, MeOH, 70°C, then liq. NH₃, Na, -80°C; (e) TEMPO, TBACl, NCS, CH₂Cl₂/H₂O, pH 8.6: NaClO₂, NaH₂PO₄, *tert*-BuOH, 2-methyl-2-butene/H₂O, then CH₂N₂, Et₂O; (f) thioglycoside¹⁴ **15**, NIS–TfOH, CH₂Cl₂, MS 4 Å, -20°C; then NaOMe, MeOH; (g) NaBH₄, DMF, 70°C; (h) **8**, NIS–TfOH, CH₂Cl₂, MS 4 Å, -20°C; (i) 2 M KOH, MeOH, 40°C; (j) Cl₃C₆H₂COCl, Et₃N, DMAP, toluene; (k) thioglycoside¹⁵ **21**, NIS–TfOH, CH₂Cl₂, MS 4 Å, -20°C; (l) RhCl(PPh)₃, diazabicyclo[2,2,2]octane, EtOH, reflux: 2 M HCl, 45°C, then (2*R*,3*R*)-3-benzyloxy-2-methylbutyric acid, DMAP, WSC, CH₂Cl₂; (m) Pd/C, H₂, MeOH

Assembly of the four intermediates (8, 14, 15 and 21) were performed by iodonium activation of the thioglycosides. At first, 14 and the glucosyl donor 15 were treated with NIS–TfOH¹⁶ in CH₂Cl₂ at -20° C, and the β -glucoside 16 was isolated after de-*O*-acetylation. Reduction of the mesyloxy group in 16 with NaBH₄ in DMF gave the glycosyl acceptor⁶ 17, which was coupled with 8 in a similar way to afford the trisaccharide⁶ 18 in 71% yield. After saponification with aqueous NaOH, the resulting carboxylic acid 19 was subjected to macrolactonization by a mixed anhydride procedure¹⁷ under high-dilution conditions in toluene (1.71×10^{-4} M). Although two possible hydroxyl groups are present at the 2b- and 2c-positions, the desired 22-membered macrolide⁶ 20 was obtained as a single product in 60% yield together with recovered starting material 19. The structure of 20 was unambiguously corroborated by two-dimensional COSY and NOESY NMR spectroscopy. Similar glycosylation of 20 with the L-rhamnosyl donor 21 gave the tetrasaccharide⁶ 22 in 15% yield, which was not improved by use of another thiophilic reagent, MeOTf. The low yield was probably due to steric hindrance of the hydroxyl

group at the 2a-position. To synthesize the target compound, the allyl group in **22** was isomerized with Wilkinson's catalyst and the propenyl group was removed by acid hydrolysis. The resulting alcohol was esterified with (2R,3R)-3-benzyloxy-2-methylbutyric acid⁴ in the presence of water-soluble carbodiimide in CH₂Cl₂, giving the fully protected derivative **23** in 62% yield. Finally, removal of all benzyl groups in **23** by catalytic hydrogenolysis gave calonyctin A2 (**2**), of which the NMR spectra in pyridine- d_5 were consistent with those already reported.²

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research on Priority Areas from the Ministry of Education, Science, Sports and Culture of Japan (No. 0924010).

References

- 1. Ding, J.-L. Acta Nong Ye 1952, 3, 17–24; Gou, Q.; Wang, Z.; Fang, Y.; Bian, Z. J. Xiamen Univ. 1980, 83–91.
- Fang, Y.-W.; Chai, W.-A.; Chen, S.-M.; He, Y.-Z.; Zhao, L.; Peng, J.-H.; Huang, H.-W.; Xin, B. Carbohydr. Res. 1993, 245, 259–270.
- 3. Hu, Y.; Guo, O.; Pastor, R.; Serratrice, G.; Cambon, A.; Bosso, C. Youji Huaxue 1989, 9, 146-150.
- 4. Jiang, Z.-H.; Geyer, A.; Schmidt, R. R.; Angew. Chem., Int. Ed. Engl. 1995, 34, 2520-2524.
- 5. Sakairi, N.; Okazaki, Y.; Furukawa, J.; Kuzuhara, H.; Nishi, N.; Tokura, S. Bull. Chem. Soc. Jpn. 1998, 71, 679-683.
- 6. All new compounds had satisfactory elemental analysis data or high-resolution mass spectra. Optical rotations were measured in CHCl₃ at 25°C unless otherwise noted. Selected data for 4: ¹H NMR (300 MHz, CDCl₃) $\delta_{\rm H}$ 5.72, 5.59, 5.56 (each s, PhCH); $[\alpha]_D$ -59.2 (c 2.0). Compound 5: δ_H 5.58, 5.53 (each s, PhCH), 4.68 (d, J=9.6, H-1), 4.65 (d, J=7.0, H-1'); $[\alpha]_D - 43.4$ (*c* 0.47 in CHCl₃); HRMS (FAB+) *m*/*z* for C₃₅H₃₉O₁₀S (M+H)⁺, calcd: 651.2263; found: 651.2236. Compound 6: $\delta_{\rm H}$ 5.72, 5.59, 5.56 (each s, Ph*CH*); [α]_D -3.8 (*c* 5.74). Compound 8: $\delta_{\rm H}$ 4.75 (d, *J*=8.0, H-1'), 4.70 (d, J=10.1, H-1). Compound **9**: $\delta_{\rm H}$ 3.85 (m, CH), 3.65 (t, J=5.6, CH₂). Compound **11**: $\delta_{\rm H}$ 3.69 (t, J=6.0, 14-CH₂), 3.46 (t, J=6.7, 1-CH₂), 2.00 (bs, OH); [α]_D +2.1 (*c* 0.40 in CHCl₃); HRMS (FAB+) *m*/*z* for C₄₄H₅₉O₄Si (M+H)⁺, calcd: 679.4155; found: 679.4183. Compound **12**: δ_H 0.93 (t, J=7.3, 14-CH₃), 4.49 (s, PhCH₂), 5.15 (m, 11-CH); [α]_D +3.7 (c 0.29); HRMS (FAB+) m/z for $C_{28}H_{41}O_3$ $(M+H)^+$, calcd: 425.3056; found: 425.3060. Compound **13**: δ_D 3.64 (t, *J*=6.6, 1-CH₂), 3.61 (m, 11-CH); $[\alpha]_D$ +1.8 (*c* 0.80). Compound 14: m.p. 41.4–42°C; δ_D 3.67 (s, CH₃O), 3.60 (m, 11-CH); $[\alpha]_D$ 0.7 (*c* 0.25). Compound **17**: δ_{D} 4.25 (d, J=7.3, H-1), 3.66 (s, COO*CH*₃), 0.90 (t, J=7.1, CH₃); [α]_D -17.5 (c 5.44). Compound **18**: δ_{D} 4.99 (d, J=7.5, H-1b), 4.73 (d, J=7.7, H-1c), 4.22 (d, J=7.5, H-1a); [α]_D +10.1 (c 0.43). Compound **20**: δ_D 4.99 (d, J=7.5, H-1a); H-1b), 4.73 (d, J=7.7, H-1c), 4.22 (d, J=7.5, H-1a); $[\alpha]_D = 18.7$ (c 0.69); HRMS (FAB+) m/z for $C_{63}H_{84}O_{14}Na$ (M+Na)⁺, calcd: 1087.5759; found: 1087.5740. Compound 22: $\delta_{\rm H}$ ((CD₃)₂CO): 5.44 (d, J=0.9, H-1d), 4.32 (d, J=7.6, H-1a), 4.27 (bs, 1H, H-2d); $[\alpha]_D = 6.3 (c \ 0.20)$; HRMS (FAB+) m/z for $C_{90}H_{112}O_{18}Na (M+Na)^+$, calcd: 1503.7746; found: 1503.7730. Compound 23: δ_H ((CD₃)₂CO): 5.51 (t, J=9.4, H-3c), 5.41 (s, H-1d), 5.15 (d, J=7.9, H-1c), 5.08 (t, J=8.8, H-2c), 4.85 (d, J=7.8, H-1c), 5.08 (t, J=8.8, H J=8.8, H-1b), 4.38 (bs, H-2d), 4.31 (d, J=7.6, H-1a), 4.12 (bd, J=9.3, H-3d), 4.01 (t, J=9.4, H-3b), 3.61 (t, J=8.6, H-2a), 3.45 (t, J=8.4, H-4c), 3.37–3.27 (m, H-5a), 3.18 (t, J=8.8, H-4a), 3.21–3.11 (m, H-5a), 2.92 (t, J=9.1, H-4b), 2.33–2.22 (m, CH_2 COO), 0.86 (t, J=7.0, CH_3); δ_C ((CD_3)₂CO): 174.0, 172.8, 139.9, 139.4, 139.3, 139.2, 129.2, 128.7, 128.6, 128.5, 128.5, 128.6, 128.5, 128.5, 128.6, 128.5 128.3, 128.2, 128.1, 127.9, 127.8, 127.7, 127.6, 127.5, 103.0, 100.7, 99.6, 86.3, 84.4, 82.0, 81.9, 81.4, 78.8, 77.5, 75.8, 75.4, 74.9, 74.8, 74.7, 73.9, 72.8, 71.9, 71.6, 71.1, 45.3, 38.7, 35.6, 33.7, 31.0, 30.5, 30.3, 30.1, 29.8, 29.6, 29.3, 29.1, 28.8, 28.6, 25.9, 25.8, 25.4, 25.2, 22.8, 18.5, 18.2, 18.0, 17.9, 17.8, 15.9, 14.1, 13.9, 12.9, 12.1; [α]_D - 8.9 (c 0.23); HRMS (FAB+) m/z for C₉₉H₁₂₃O₂₀Na (M+H+Na)⁺, calcd: 1654.8505; found: 1654.8634. Compound **2**: [α]_D –51.7 (*c* 0.12, EtOH); HRMS (FAB+) m/z for C₄₃H₇₄O₂₀Na (M+Na)⁺, calcd: 933.4671; found: 933.4670.
- 7. Oikawa, M.; Liu, W.-C.; Nakai, Y.; Koshida, S.; Fukase, K.; Kusumoto, S. Synlett 1996, 1179–1180.
- 8. Similar reduction of the 2,2'-dibenzoate of 5 resulted in the formation of an intractable mixture of *O*-benzoyl and *O*-benzyl derivatives.
- 9. Ek, M.; Garegg, P. J.; Hultberg, H.; Oscarson, S. J. Carbohydr. Chem. 1983, 2, 305-311.
- 10. Mikami, T.; Asano, H.; Mitsunobu, O. Chem. Lett. 1987, 2033-2034.
- 11. Ackermann, J.; Waespe-Sarcevic, N.; Tamm, C. Helv. Chim. Acta 1984, 67, 254–260.

12. Hooz, J.; Gilani, S. S. H. Can. J. Chem. 1968, 46, 86-87.

- 13. Einhorn, J.; Einhorn, C.; Ratajczak, F.; Pierre, J.-L. J. Org. Chem. 1996, 61, 7454-7454.
- 14. New compound **15** [¹H NMR: 3.21 (s, Ms); $[\alpha]_D$ +12.6 (*c* 0.83)] was prepared from phenyl 4,6-*O*-benzylidene-3-*O*-benzyl-1-thio- β -glucopyranoside followed by reductive cleavage of the benzylidene group and *O*-mesylation at the 6-position.
- 15. New compound **21** [¹H NMR: 5.49 (bs, H-1); $[\alpha]_D$ +0.65 (*c* 0.70)] was prepared by the Lewis acid-promoted thioglycosidation of the fully acetylated rhamnose, followed by de-*O*-acetylation and *O*-benzylation.
- 16. Veeneman, G. H.; van Leeuwen, S. H.; van Boom, J. H. Tetrahedron Lett. 1990, 31, 1331-1334.
- Hikota, M.; Sakurai, Y.; Horita, K.; Yonemitsu, O. *Tetrahedron Lett.* **1990**, *31*, 6367–6370; Larson, D. E. P.; Heathcook, C. H. J. Org. Chem. **1996**, *61*, 5208–5209.